4) The pH of a H_2SO_4 solution is 2. What is the initial concentration of H_2SO_4 ? $K_{a2}=0.01$

1122 0 4 1 1 1 1 1 2	HSO ₄ -	$\mathrm{SO_4}^{-2}$	H^+
Initial	X	0	X
Change	-Y	+Y	+Y
Equilibrium	X-Y	Y	0.01
0.01 = 0.01 Y/(X - Y)	X+Y=0.01 -> X=0.006	M Y=0.003M	
	H_2SO_4	$\mathbf{HSO_4}^{-}$	\mathbf{H}^{+}
		22204	
Initial	Z	0	0
Initial Change	Z -0.006		0 +0.006

 $K_{a1}=0.006^2/(Z-0.006)$

_That is all that I could reach. I don't know how to continue or if there is a mistake in my answer until now.

6) What is the S^{2-} concentration of a 10^{-3} M HCl solution which is saturated with H_2S ?

 $H_2S(aq) + 2H_2O(1) \ 2H_3O^+(aq) + S^2^-(aq) \ Ka = 1.1 \times 10\text{-}21$ S^{2-} \mathbf{H}^{+} H_2S **Initial** Y 10-3 0 Change -X +X+X $X+10^{-3}$ **Equilibrium** Y-X X

 $1.1 \times 10^{-21} = X(X+10^{-3})/(Y+X)$

_ That is all that I could reach. I don't know how to continue or if there is a mistake in my answer until now.