4) The pH of a H_2SO_4 solution is 2. What is the initial concentration of H_2SO_4 ? $K_{a2}=0.01$ | 1122 0 4 1 1 1 1 1 2 | HSO ₄ - | $\mathrm{SO_4}^{-2}$ | H^+ | |------------------------|---------------------|----------------------|------------------| | Initial | X | 0 | X | | Change | -Y | +Y | +Y | | Equilibrium | X-Y | Y | 0.01 | | 0.01 = 0.01 Y/(X - Y) | X+Y=0.01 -> X=0.006 | M Y=0.003M | | | | H_2SO_4 | $\mathbf{HSO_4}^{-}$ | \mathbf{H}^{+} | | | | 22204 | | | Initial | Z | 0 | 0 | | Initial
Change | Z
-0.006 | | 0
+0.006 | $K_{a1}=0.006^2/(Z-0.006)$ _That is all that I could reach. I don't know how to continue or if there is a mistake in my answer until now. 6) What is the S^{2-} concentration of a 10^{-3} M HCl solution which is saturated with H_2S ? $H_2S(aq) + 2H_2O(1) \ 2H_3O^+(aq) + S^2^-(aq) \ Ka = 1.1 \times 10\text{-}21$ S^{2-} \mathbf{H}^{+} H_2S **Initial** Y 10-3 0 Change -X +X+X $X+10^{-3}$ **Equilibrium** Y-X X $1.1 \times 10^{-21} = X(X+10^{-3})/(Y+X)$ _ That is all that I could reach. I don't know how to continue or if there is a mistake in my answer until now.