
Vibrational-Rotational Spectra of HCl and DCl

1 Introduction

This experiment is concerened with the the rotational fine structure of the infrared vibrational spectrum of
a linear molecule such as HCl. From an interpretation of the details of this spectrum it is possible to obtain
the moment of inertia of the molecule and thus the internuclear separation. In addition, the pure vibrational
frequency determines a force constant that is a measure of the bond strength. By a study of DCl also, the
isotope effect can be observed.

2 Theory

The simplest model of a vibrating diatomic molecule is a harmonic oscillator, for which the potential energy
depends quadratically on the change in internuclear distance. The allowed energy levels of a harmonic
oscillator, as calculated from quantum mechanics, are

E(v) = hν(v + 1
2 ) (1)

where v is the vibrational quantum number having integral values 0, 1, 2, ...; ν is the vibrational frequency;
and h is Planck’s constant.

The simplest model of a rotating diatomic molecule is a rigid rotor or “dumbbell” model in which the
two atoms of mass m1 and m2 are considered to be joined by a rigid, weightless rod. The allowed energy
levels for a rigid rotor may be shown by quantum mechanics to be

E(J) =
h2

8π2I
J(J + 1) (2)

where the rotational quantum number J may take integral values 0, 1, 2, .... The quantity I is the moment
of inertia, which is related to the internuclear distance r and the reduced mass µ = m1m2/(m1 +m2) by

I = µr2 (3)

Since a real molecule is undergoing both rotation and vibration simultaneously, a first approximation to
its energy levels E(v, J) would be the sum of expressions (1) and (2). A more complete expression for the
energy levels of a diatomic molecule is given below, with the levels expressed as term values T in cm−1 units
rather than as energy values E in joules:

T (v, J) =
E(v, J)

hc
= ν̃e(v + 1

2 ) − ν̃exe(v + 1
2 )2 +BeJ(J + 1) −DeJ

2(J + 1)2 − αe(v + 1
2 )J(J + 1) (4)

where c is the speed of light in cm/s, ν̃e is the frequency in cm−1 for the molecule vibrating about its
equilibrium internuclear separation re, and

Be =
h

8π2Iec
(5)

The first and third terms on the right hand side of Eq. (4) are the harmonic oscillator and the rigid
rotor terms with r equal to re. The second term (involving the constant xe) takes into account the effect
of anharmonicity. Since the real potential U(r) for a molecule differs from a harmonic potential Uharm (see
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Figure 1: Schematic diagram showing potential energy U as a function of internuclear separation r for a
diatomic molecule. The harmonic potential is indicated by the dashed curve. The vibrational levels are also
shown.

Fig. 1), the real vibrational levels are not quite those given by Eq. (1) and a correction term is required.
The fourth term (involving the constant De) takes into account the effect of centrifugal stretching. Since
a chemical bond is not truly rigid but more like a stiff spring, it stretches somewhat when the molecule
rotates. Such an effect is important only for high J values, since the constant De is usually very small.
The last term in Eq. (4) accounts for interaction between vibration and rotation. During a vibration the
internuclear distance r changes; this changes the moment of intertia and affects the rotation of the molecule.
The constant αe is also quite small, but this term should not be neglected.

Selection Rules. The harmonic oscillator, rigid rotor selection rules are ∆v = ±1 and ∆J = ±1;
that is, infrared emission or absorption can occur only when these “allowed” transitions take place. For an
anharmonic diatomic molecule, the ∆J = ±1 selection rule is still valid, but weak transitions corresponding
to ∆v = ±2,±3, etc. (overtones) can be observed. Since we are interested in the most intense absorption
band (the “fundamental”), we are concerned with transitions from various J ′′ levels of the vibrational ground
state (v′′ = 0) to J ′ levels in the first excited vibrational state (v′ = 1). From the selection rule we know that
the transition must be from J ′′ to J ′ = J ′′±1. Since ∆E = hν = hcν̃, the frequency ν̃ (in wavenumbers) for
this transition will be just T (v′, J ′)−T (v′′, J ′′). When ∆J = +1 (J ′ = J ′′+ 1) and ∆J = −1 (J ′ = J ′′− 1),
we find, respectively, from Eq. (4) that

ν̃R = ν̃0 + (2Be − 3αe) + (2Be − 4αe)J
′′ − αeJ

′′2 J ′′ = 0, 1, 2, ... (6)

ν̃P = ν̃0 − (2Be − 2αe)J
′′ − αeJ

′′2 J ′′ = 0, 1, 2, ... (7)

where the De term has been dropped and ν̃0, the frequency of the forbidden transition from v′′ = 0, J ′′ = 0
to v′ = 1, J ′ = 0, is

ν̃0 = ν̃e − 2ν̃exe (8)

The two series of lines given in Eqs. (6) and (7) are called R and P branches, respectively. These allowed
transitions are indicated on the energy-level diagram given in Fig. 2. If αe were negligible, Eqs. (6) and
(7) would predict a series of equally spaced lines with separation 2Be except for a missing line at ν̃0. The
effect of interaction between rotation and vibration (nonzero αe) is to draw the lines in the R branch closer
together and spread the lines in the P branch farther apart as shown for a typical spectrum in Fig. 3. For
convenience let us introduce a new quantity m, where m = J ′′ + 1 for the R branch and m = −J ′′ for the P
branch as shown in Fig. 3. It is now possible to replace Eqs. (6) and (7) by a single equation

ν̃(m) = ν̃0 + (2Be − 2αe)m− αem
2 (9)

where m takes all integral values and m = 0 yields the frequency ν̃0 of the forbidden “purely vibrational”
transition. If one retains the De term of Eq. (4) (which assumes D′′ = D′ = De), Eq. (9) takes the form
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Figure 2: Rotational energy levels for the ground vibrational state (v′′ = 0) and the first excited vibrational
state (v′ = 1) in a diatomic molecule. The vertical arrows indicate allowed transitions in the R and P
branches; numbers in parentheses index the value J ′′ of the lower state. Transitions in the Q branch
(∆J = 0) are not shown since they are not infrared active.

ν̃(m) = ν̃0 + (2Be − 2αe)m− αem
2 − 4Dem

3 (10)

Thus a multiple linear regression can be performed to determine ν̃0, Be, αe, and De.
Isotope Effect. When an isotopic substitution is made in a diatomic molecule, the equilibrium bond

length re and the force constant k are unchanged, since they depend only on the behavior of the bonding
electrons. However, the reduced mass µ does change, and this will affect the rotation and vibration of the
molecule. In the case of rotation, the isotope effect can be easily stated. From the definition of Be and I,
we see that

B∗e
Be

=
µ

µ∗
(11)

where an asterisk is used to distinguish one istopic molecule from another.
For a harmonic oscillator model, the frequency ν̃e in wavenumbers is given by

ν̃e =
1

2πc

(
k

µ

) 1
2

(12)

which leads to the relation

ν̃∗e
ν̃e

=

(
µ

µ∗

) 1
2

(13)

The ratio ν̃∗0/ν̃0 differs slightly from this harmonic ratio dues to deviation of the true potential function from
a quadratic form, as depicted in Fig. 1. A closer approximation to the solid curve can be had by adding
cubic and higher anharmonic terms to U(r), i.e.,

U(r) =
1

2
k(r − re)

2 + c(r − re)
3 + d(r − re)

4 + ... (14)
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Figure 3: Schematic vibrational-rotational infrared spectum for a diatomic molecule.

Although somewhat complicated, it an be shown that the c and d terms yield, as the first correction to the
energy levels, precisely the −ν̃exe(v + 1

2 )2 term given in Eq. (4). A similar conclusion is reached if U(r) is
taken to have the Morse potential form, for which T (v) = ν̃e(v+ 1

2 )− ν̃exe(v+ 1
2 )2. In both cases, the mass

dependence of ν̃exe is found to be greater than for ν̃e and is

ν̃∗ex
∗
e

ν̃exe
=

µ

µ∗
(15)

Equations (13) and (15) are useful in obtaining the ν̃∗0 counterpart of Eq. (8),

ν̃∗0 = ν̃∗e − 2ν̃∗ex
∗
e = ν̃e

(
µ

µ∗

) 1
2

− 2ν̃exe
µ

µ∗
(16)

and it is seen that a measurement of ν̃0 from HCl and DCl suffices for a determination of ν̃e and ν̃exe.
Alternatively, of course, the latter constant can be determined from overtone vibrations (∆v > 1) of a single
isotopic form. However, such overtones generally have low intensity, and the transitions may fall outside the
range of many infrared instruments, so the isotopic shift method is used in the present experiment.

Since HCl gas is a mixture of H35Cl and H37Cl molecules, a chlorine isotope effect will also be present.
However, the ratio of the reduced mass is only 1.0015; therefore high resolution is required to detect this
effect. HCl is predominantly H35Cl and for this experiment, so the stronger lines in the spectra are those of
H35Cl. If deuterium is substituted for hydrogenm the ration of the reduced masses, µ(D35Cl)/µ(H35Cl), is
1.946 and the isotope effect is quite large.

3 Calculations

Index the lines in the spectra with appropriate m values as shown in Fig. 3 (be sure to label your P and R
branches correctly). If 35Cl/37Cl splitting is seen, index the stronger 35Cl lines first. Make a table of these
m values and the corresponding frequencies ν̃(m). Express the frequencies in units of cm−1 to the tenth of
a cm−1. Then list the differences between adjacent lines ∆ν̃(m), which will be roughly 2Be but should vary
with m. Plot ∆ν̃(m) against m, draw a straight line through the points, and check any points that seem
out of line (note that ∆ν̃(m) = ν̃(m + 1) − ν̃(m), not ν̃(m) − ν̃(m − 1)). Next, plot ν̃(m) against m and
carry out a least-squares fit to the data with Eq. 9 to determine ν̃0, Be, and αe. Repeat this procedure using
Eq. 10, noting that high m transmissions will be most important to determine De due to its m3 dependence.

Repeat the above procedure for the 37Cl lines. To distinguish these from those pertaining the 35Cl, label
with an asterisk as in the text.
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ν̃e ν̃exe Be αe De(×103) re (Å) k (N/m)
H35Cl 2989.74 52.05 10.5909 0.3019 0.5316 1.2746 516.3
H37Cl 2987.54 51.97 10.5753 0.3012 0.5300 1.2746

Table 1: Literature values. All figures are in cm−1 unless otherwise noted.

Using the ν̃0 values for H35Cl and H37Cl, determine ν̃e and ν̃exe for H35Cl. To do this, rearrange Eq. (8)
and insert into the right hand side of Eq. (16). Use the istopic masses to calculate the reduced mass ratios.
These are (in atomic mass units) H = 1.007825, D = 2.104102, 35Cl = 34.968853, and 37Cl = 36.965903.
From ν̃0 and ν̃e, calculate k (in units of N/m).

Calculate Ie, the moment of inertia, and re, the internuclear distance, for H35Cl.

4 Discussion

Compute the ratio B∗e/Be cand compare with the rigid rotor prediction of Eq. (11). Compute Bv = Be −
αe(v+ 1

2 ) for the v = 0, 1, and 2 levels of H35Cl and compute rv for each of those levels. What is rv and how

does it change with v? Compare the ratio of of your calculated ν̃∗0/ν̃ ratio with the ratio (µ/µ∗)
1
2 expected

for the harmonic oscillator. How anharmonic is the HCl molecule, i.e., how large is xe? Use your values of
ν̃e and ν̃exe and Eq. (4) to predict the frequencies of the first overtone transition (ignore rotational terms).
Compare all of your values calculated values to those in the literature. Which gives you a better estimate of
the force constant, ν̃0 or ν̃e?
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