October 13, 2019, 06:55:45 PM
Forum Rules: Read This Before Posting


Topic: Effusion and Kinetic Theory of Gases  (Read 4597 times)

0 Members and 1 Guest are viewing this topic.

netapparition

  • Guest
Effusion and Kinetic Theory of Gases
« on: September 25, 2004, 03:22:30 PM »
We have been given a thought provoking question that requires a relationship to be made between effusion and the kinetic theory of gases in the following question:

You are in the module of the Mir Space Station (ambient temperature 35.0 °C-- they are having trouble with the climate control) and notice a round hole 7.8 mm in diameter.  You look at the pressure gauge and see the pressure is now 0.17 atm.  (The atmosphere normally consists of 0.20 atm of pure oxygen (32 g/mole).  The cabin has a volume of 70.1 m^3.) How long has it been since the hole was formed?  

I am aware of the relationship (dp/dt)=(kT/V)(dN/dt), but am unsure how to apply the relationship to the above question.  The expression (dN/dt) can be derived by Graham's law of effusion.  

Please advise

Demotivator

  • Guest
Re:Effusion and Kinetic Theory of Gases
« Reply #1 on: September 25, 2004, 07:04:27 PM »
First substitute for dN/dt , then integrate dp/dt
dN/dt =  Z  where Z is some expression
dp =  (kT/V)Z dt
integrate:
delta P =  (kT/V)Z(delta t)
Solve for delta t.
« Last Edit: September 26, 2004, 12:07:24 PM by Demotivator »

Sponsored Links