April 20, 2024, 03:28:54 AM
Forum Rules: Read This Before Posting

Topic: Negative Induction effect with respect to Electron Deficiency  (Read 654 times)

0 Members and 1 Guest are viewing this topic.

Offline IndianKemistryHater

  • Very New Member
  • *
  • Posts: 1
  • Mole Snacks: +0/-0
Negative Induction effect with respect to Electron Deficiency
« on: February 08, 2024, 02:43:02 AM »
I am pretty weak at Chem, so forgive me for thenstupid question.
I am really confused that whether an Electron Deficient Species(a Cation), shows more negative I effect than an anion? If its true, it would mean that Electronegative Species will show lesser - I effect,but thats not true right? So Anions should show more -I effect than Cations? A teacher told us that Cations will attract more and show -I effect because it already has a deficient of electrons?
(Another apology for stupid question and bad english, i will be really grateful if someone can help me with this :) 

Offline Hunter2

  • Sr. Member
  • *****
  • Posts: 2178
  • Mole Snacks: +166/-48
  • Gender: Male
  • Vena Lausa moris pax drux bis totis
Re: Negative Induction effect with respect to Electron Deficiency
« Reply #1 on: February 19, 2024, 06:09:04 AM »
The inductive I and also mesomer M effect is used in organic covalent bonded molecules, not in ionic bonded compounds like salts.


Atoms that have an electron-withdrawing effect have the −I effect.  This is usually caused by high electronegativity or a positive charge.  Strongly electronegative particles attract electrons particularly strongly.

Particles that have an electron-pushing effect have a +I effect.  This happens e.g.  B. if the particle is negatively charged or has a low electronegativity.  The +I effect can also be observed in the formation of hybrid orbitals, e.g.  B. the methyl group CH3 donates electrons, even if this is not obvious due to the C–C single bond.

So in case of ionic bonds its difficult to say. A anion has normaly a high electronegativity, but also a negative charge. For a cathion its opposit.

« Last Edit: February 19, 2024, 06:22:34 AM by Hunter2 »

Sponsored Links