September 14, 2024, 02:03:46 PM
Forum Rules: Read This Before Posting

### Topic: Forum Now Supports LATEX!  (Read 96500 times)

0 Members and 1 Guest are viewing this topic.

#### haz658

• Regular Member
• Posts: 31
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #45 on: May 01, 2010, 04:34:07 PM »
Still practicing.
$$V_(total) = V^(partial,mol)_(A) n_A + V^(partial,mol)_(B) n_B /$$

#### haz658

• Regular Member
• Posts: 31
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #46 on: May 01, 2010, 04:35:51 PM »
$$V_{total} = V^{partial,mol}_{A} n_A + V^{partial,mol}_{B} n_B /$$

#### haz658

• Regular Member
• Posts: 31
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #47 on: May 07, 2010, 08:22:24 PM »
Checking for errors.

$$log \left (\frac {W} {W_{max}} \right) = -H log \left (\frac {h} {\frac {N} {2}} \right ) - T log \left (\frac {T} {\frac {N} {2}} \right ) /$$

$$\alpha = \frac {(H - T)} {N} /$$

$$H = \left (\frac {N} {2} \right ) (1 + \alpha ) /$$

$$T = \left (\frac {N} {2} \right ) (1 - \alpha) /$$

$$\frac {W} {W_{max}} = e^{-N \alpha ^{2}} /$$

$$ln \left (\frac {W} {W_{max}} \right ) = - \left (\frac {N} {2} \right ) (1 + \alpha) ln (1 + \alpha) - \left (\frac {N} {2} \right ) (1 - \alpha) ln (1 - \alpha) /$$

$$ln \left (\frac {W} {W_{max}} \right ) = - \left (\frac {N} {2} \right) (1 + \alpha) ln (1 - \alpha ^{2}) + N \alpha ln (1 - \alpha) /$$

$$W = frac\ {N!} {\prod_{n} a_{n}!} /$$

$$P_{dc} = \frac {W_dc} {\sum_{n} W_{n}} /$$

#### haz658

• Regular Member
• Posts: 31
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #48 on: May 07, 2010, 08:28:24 PM »
$$log \left (\frac {W} {W_{max}} \right) = -H log \left ( \frac {h} {\frac {N} {2}} \right ) - T log \left (\frac {T} { \frac {N} {2}} \right ) /$$

#### haz658

• Regular Member
• Posts: 31
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #49 on: May 07, 2010, 08:30:41 PM »
$$log \left (\frac {W} {W_{max}} \right) = -H log \left ( \frac {H} \left ({\frac {N} {2} \right )} \right ) - T log \left (\frac {T} \left ({\frac {N} {2} \right)} \right ) /$$

#### haz658

• Regular Member
• Posts: 31
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #50 on: June 14, 2010, 03:46:11 PM »
$$\Delta G = -RTlnK /$$

#### cupid.callin

• Guest
##### Re: Forum Now Supports LATEX!
« Reply #51 on: December 11, 2010, 05:04:57 PM »
Unuseful

#### rabolisk

• Chemist
• Full Member
• Posts: 494
• Mole Snacks: +45/-25
##### Re: Forum Now Supports LATEX!
« Reply #52 on: January 22, 2011, 05:23:58 PM »
$$\frac{d[A]}{dt} /$$

#### Bert95

• New Member
• Posts: 7
• Mole Snacks: +0/-0
• Gender:
##### Re: Forum Now Supports LATEX!
« Reply #53 on: May 02, 2011, 09:48:23 AM »
test

${ HA \rightleftharpoons H^+ + A^-}$

#### Mm04302011

• New Member
• Posts: 8
• Mole Snacks: +0/-0
##### Re: Forum Now Supports LATEX!
« Reply #54 on: June 11, 2011, 11:57:09 AM »
[img]http://www.forkosh.dreamhost.com/mimetex.cgi?{ \Delta{G} = \Delta{H} - T\Delta{S} /