Chemical Forums

Please login or register.

Login with username, password and session length

Sponsored links

Pages: [1]   Go Down

Author Topic: Physical Significance of this integral  (Read 1906 times)

0 Members and 1 Guest are viewing this topic.

AdiDex

  • Full Member
  • ****
  • Mole Snacks: +16/-12
  • Offline Offline
  • Gender: Male
  • Posts: 305
Physical Significance of this integral
« on: November 08, 2018, 09:41:19 PM »

Recently, I was solving some questions on Rigid Rotor. I found this question very amusing.

Evaluate the integral

<Y(l,m+2) | Lx2 | Y(l,m+2)  >

I evaluated it , value is

ħ((l(l+1)-(m+2)(m+1))^(1/2)

But I didn't get the point of evaluating it. Is there any application of such kind of integrals?
Is there any physical significance of it?
I know similar kind of integral are evaluated in case of transition dipole integral,  where we take two different wave functions.
What is actual significance of such operations ?
Logged

Irlanur

  • Chemist
  • Full Member
  • *
  • Mole Snacks: +32/-4
  • Offline Offline
  • Posts: 422
Re: Physical Significance of this integral
« Reply #1 on: November 09, 2018, 01:53:48 AM »

Integrals like this might pop up everywhere in QM where rotations are involved. One important point is the matrix representation of operators. If you want to calculate anything in a computer in QM, you usually want to have everything as matrices. Matrices need some kind of basis. In this case, it is the spherical harmonics. The matrix elements are then always of this form.
Logged

Corribus

  • Chemist
  • Sr. Member
  • *
  • Mole Snacks: +425/-20
  • Online Online
  • Gender: Male
  • Posts: 2617
  • A lover of spectroscopy and chocolate.
Re: Physical Significance of this integral
« Reply #2 on: November 09, 2018, 06:02:14 AM »

How did you evaluate this? The spherical harmonics aren't eigenfunctions of the x-oriented angular momentum operator. I.e., the angular momentum in the x direction is not quantized (at least, under the convention that the wavefunctions are chosen so that the angular momentum in the z-direction is).

In the case of the transition dipole, such integrals are usually evaluated to determine whether a spectroscopic transition is allowed or not. But here you have the initial and final states being the same, and the operator is wrong, so the problem isn't relevant to the transition dipole.
Logged
What men are poets who can speak of Jupiter if he were like a man, but if he is an immense spinning sphere of methane and ammonia must be silent?  - Richard P. Feynman

AdiDex

  • Full Member
  • ****
  • Mole Snacks: +16/-12
  • Offline Offline
  • Gender: Male
  • Posts: 305
Re: Physical Significance of this integral
« Reply #3 on: November 09, 2018, 10:34:53 AM »

Sorry. It was -

<Y(l,m+2) | Lx2 | Y(l,m)  >

And Even answer is

ħ2/4 [((l(l+1)-(m)(m+1))((l(l+1)-(m+1)(m+2))]^(1/2)

I was really sleepy  ;D .
« Last Edit: November 09, 2018, 10:47:50 AM by AdiDex »
Logged

AdiDex

  • Full Member
  • ****
  • Mole Snacks: +16/-12
  • Offline Offline
  • Gender: Male
  • Posts: 305
Re: Physical Significance of this integral
« Reply #4 on: November 09, 2018, 10:58:50 AM »

Here I am attaching the solution. There are some writing errors as I didn't have much battery in my phone so I did this in hurry.
Logged
Pages: [1]   Go Up
 

Mitch Andre Garcia's Chemical Forums 2003-Present.

Page created in 0.072 seconds with 20 queries.